課程簡介

介紹

  • Machine Learning 模型與傳統軟體的對比

DevOps 工作流概述

Machine Learning 工作流概述

ML 即代碼加數據

ML 系統的元件

案例研究:銷售 Forecasting 應用程式

Accessing 數據

驗證數據

數據轉換

從數據管道到 ML 管道

構建數據模型

訓練模型

驗證模型

再現模型訓練

部署模型

將經過訓練的模型提供到生產環境

測試 ML 系統

持續交付編排

監視模型

數據版本控制

調整、擴展和維護 MLOps 平臺

故障排除

總結和結論

最低要求

  • 瞭解軟體開發週期
  • 具有構建或使用 Machine Learning 模型的經驗
  • 熟悉 Python 程式設計

觀眾

  • ML工程師
  • DevOps 工程師
  • 數據工程師
  • 基礎設施工程師
  • 軟體開發人員
 35 時間:

人數


每位參與者的報價

客戶評論 (3)

Provisional Upcoming Courses (Require 5+ participants)

課程分類