課程簡介
應用材料簡介 Machine Learning
- 統計學習與機器學習
- 反覆運算和評估
- 偏差-方差權衡
使用 Scala 進行機器學習
- 庫的選擇
- 附加工具
回歸
- 線性回歸
- 泛化和非線性
- 習題
分類
- 貝葉斯複習
- 樸素貝葉斯
- 邏輯回歸
- K-最近鄰
- 習題
交叉驗證和重採樣
- 交叉驗證方法
- Bootstrap
- 習題
無監督學習
- K-means 聚類
- 例子
- 無監督學習和超越 K 均值的挑戰
最低要求
瞭解 Java/Scala 程式設計語言。建議基本熟悉統計學和線性代數。
客戶評論 (2)
the ML ecosystem not only MLFlow but Optuna, hyperops, docker , docker-compose
Guillaume GAUTIER - OLEA MEDICAL
Course - MLflow
I enjoyed participating in the Kubeflow training, which was held remotely. This training allowed me to consolidate my knowledge for AWS services, K8s, all the devOps tools around Kubeflow which are the necessary bases to properly tackle the subject. I wanted to thank Malawski Marcin for his patience and professionalism for training and advice on best practices. Malawski approaches the subject from different angles, different deployment tools Ansible, EKS kubectl, Terraform. Now I am definitely convinced that I am going into the right field of application.